#abc262bL. 例题8.2.1 图上三角形

例题8.2.1 图上三角形

Score : 200200 points

Problem Statement

You are given a simple undirected graph with NN vertices and MM edges. The vertices are numbered 1,,N1, \dots, N, and the ii-th (1iM)(1 \leq i \leq M) edge connects Vertex U_iU\_i and Vertex V_iV\_i.

Find the number of tuples of integers a,b,ca, b, c that satisfy all of the following conditions:

  • 1a<b<cN1 \leq a \lt b \lt c \leq N

  • There is an edge connecting Vertex aa and Vertex bb.

  • There is an edge connecting Vertex bb and Vertex cc.

  • There is an edge connecting Vertex cc and Vertex aa.

Constraints

  • 3N1003 \leq N \leq 100

  • 1MN(N1)21 \leq M \leq \frac{N(N - 1)}{2}

  • 1U_i<V_iN(1iM)1 \leq U\_i \lt V\_i \leq N \, (1 \leq i \leq M)

  • (U_i,V_i)(U_j,V_j)(ij)(U\_i, V\_i) \neq (U\_j, V\_j) \, (i \neq j)

  • All values in input are integers.


Input

Input is given from Standard Input in the following format:

NN MM

U1U_1 V1V_1

\vdots

UMU_M VMV_M

Output

Print the answer.


Sample Input 1

5 6

1 5

4 5

2 3

1 4

3 5

2 5

Sample Output 1

2

(a,b,c)=(1,4,5),(2,3,5)(a, b, c) = (1, 4, 5), (2, 3, 5) satisfy the conditions.


Sample Input 2

3 1

1 2

Sample Output 2

0


Sample Input 3

7 10

1 7

5 7

2 5

3 6

4 7

1 5

2 4

1 3

1 6

2 7

Sample Output 3

4